Vector Calculus

$ % macros % MathJax \newcommand{\bigtimes}{\mathop{\vcenter{\hbox{$\Huge\times\normalsize$}}}} % prefix with \! and postfix with \!\! % sized grouping symbols \renewcommand {\aa} [1] {\left\langle {#1} \right\rangle} % <> angle brackets \newcommand {\bb} [1] {\left[ {#1} \right]} % [] brackets \newcommand {\cc} [1] {\left\{ {#1} \right\}} % {} curly braces \newcommand {\mm} [1] {\lVert {#1} \rVert} % || || double norm bars \newcommand {\nn} [1] {\lvert {#1} \rvert} % || norm bars \newcommand {\pp} [1] {\left( {#1} \right)} % () parentheses % unit \newcommand {\unit} [1] {\bb{\mathrm{#1}}} % measurement unit % math \newcommand {\fn} [1] {\mathrm{#1}} % function name % sets \newcommand {\setZ} {\mathbb{Z}} \newcommand {\setQ} {\mathbb{Q}} \newcommand {\setR} {\mathbb{R}} \newcommand {\setC} {\mathbb{C}} % arithmetic \newcommand {\q} [2] {\frac{#1}{#2}} % quotient, because fuck \frac % trig \newcommand {\acos} {\mathrm{acos}} % \mathrm{???}^{-1} is misleading \newcommand {\asin} {\mathrm{asin}} \newcommand {\atan} {\mathrm{atan}} \newcommand {\atantwo} {\mathrm{atan2}} % at angle = atan2(y, x) \newcommand {\asec} {\mathrm{asec}} \newcommand {\acsc} {\mathrm{acsc}} \newcommand {\acot} {\mathrm{acot}} % complex numbers \newcommand {\z} [1] {\tilde{#1}} \newcommand {\conj} [1] {{#1}^\ast} \renewcommand {\Re} {\mathfrak{Re}} % real part \renewcommand {\Im} {\mathrm{I}\mathfrak{m}} % imaginary part % quaternions \newcommand {\quat} [1] {\tilde{\mathbf{#1}}} % quaternion symbol \newcommand {\uquat} [1] {\check{\mathbf{#1}}} % versor symbol \newcommand {\gquat} [1] {\tilde{\boldsymbol{#1}}} % greek quaternion symbol \newcommand {\guquat}[1] {\check{\boldsymbol{#1}}} % greek versor symbol % vectors \renewcommand {\vec} [1] {\mathbf{#1}} % vector symbol \newcommand {\uvec} [1] {\hat{\mathbf{#1}}} % unit vector symbol \newcommand {\gvec} [1] {\boldsymbol{#1}} % greek vector symbol \newcommand {\guvec} [1] {\hat{\boldsymbol{#1}}} % greek unit vector symbol % special math vectors \renewcommand {\r} {\vec{r}} % r vector [m] \newcommand {\R} {\vec{R}} % R = r - r' difference vector [m] \newcommand {\ur} {\uvec{r}} % r unit vector [#] \newcommand {\uR} {\uvec{R}} % R unit vector [#] \newcommand {\ux} {\uvec{x}} % x unit vector [#] \newcommand {\uy} {\uvec{y}} % y unit vector [#] \newcommand {\uz} {\uvec{z}} % z unit vector [#] \newcommand {\urho} {\guvec{\rho}} % rho unit vector [#] \newcommand {\utheta} {\guvec{\theta}} % theta unit vector [#] \newcommand {\uphi} {\guvec{\phi}} % phi unit vector [#] \newcommand {\un} {\uvec{n}} % unit normal vector [#] % vector operations \newcommand {\inner} [2] {\left\langle {#1} , {#2} \right\rangle} % <,> \newcommand {\outer} [2] {{#1} \otimes {#2}} \newcommand {\norm} [1] {\mm{#1}} \renewcommand {\dot} {\cdot} % dot product \newcommand {\cross} {\times} % cross product % matrices \newcommand {\mat} [1] {\mathbf{#1}} % matrix symbol \newcommand {\gmat} [1] {\boldsymbol{#1}} % greek matrix symbol % ordinary derivatives \newcommand {\od} [2] {\q{d #1}{d #2}} % ordinary derivative \newcommand {\odn} [3] {\q{d^{#3}{#1}}{d{#2}^{#3}}} % nth order od \newcommand {\odt} [1] {\q{d{#1}}{dt}} % time od % partial derivatives \newcommand {\de} {\partial} % partial symbol \newcommand {\pd} [2] {\q{\de{#1}}{\de{#2}}} % partial derivative \newcommand {\pdn} [3] {\q{\de^{#3}{#1}}{\de{#2}^{#3}}} % nth order pd \newcommand {\pdd} [3] {\q{\de^2{#1}}{\de{#2}\de{#3}}} % 2nd order mixed pd \newcommand {\pdt} [1] {\q{\de{#1}}{\de{t}}} % time pd % vector derivatives \newcommand {\del} {\nabla} % del \newcommand {\grad} {\del} % gradient \renewcommand {\div} {\del\dot} % divergence \newcommand {\curl} {\del\cross} % curl % differential vectors \newcommand {\dL} {d\vec{L}} % differential vector length [m] \newcommand {\dS} {d\vec{S}} % differential vector surface area [m^2] % special functions \newcommand {\Hn} [2] {H^{(#1)}_{#2}} % nth order Hankel function \newcommand {\hn} [2] {H^{(#1)}_{#2}} % nth order spherical Hankel function % transforms \newcommand {\FT} {\mathcal{F}} % fourier transform \newcommand {\IFT} {\FT^{-1}} % inverse fourier transform % signal processing \newcommand {\conv} [2] {{#1}\ast{#2}} % convolution \newcommand {\corr} [2] {{#1}\star{#2}} % correlation % abstract algebra \newcommand {\lie} [1] {\mathfrak{#1}} % lie algebra % other \renewcommand {\d} {\delta} % optimization %\DeclareMathOperator* {\argmin} {arg\,min} %\DeclareMathOperator* {\argmax} {arg\,max} \newcommand {\argmin} {\fn{arg\,min}} \newcommand {\argmax} {\fn{arg\,max}} % waves \renewcommand {\l} {\lambda} % wavelength [m] \renewcommand {\k} {\vec{k}} % wavevector [rad/m] \newcommand {\uk} {\uvec{k}} % unit wavevector [#] \newcommand {\w} {\omega} % angular frequency [rad/s] \renewcommand {\TH} {e^{j \w t}} % engineering time-harmonic function [#] % classical mechanics \newcommand {\F} {\vec{F}} % force [N] \newcommand {\p} {\vec{p}} % momentum [kg m/s] % \r % position [m], aliased \renewcommand {\v} {\vec{v}} % velocity vector [m/s] \renewcommand {\a} {\vec{a}} % acceleration [m/s^2] \newcommand {\vGamma} {\gvec{\Gamma}} % torque [N m] \renewcommand {\L} {\vec{L}} % angular momentum [kg m^2 / s] \newcommand {\mI} {\mat{I}} % moment of inertia tensor [kg m^2/rad] \newcommand {\vw} {\gvec{\omega}} % angular velocity vector [rad/s] \newcommand {\valpha} {\gvec{\alpha}} % angular acceleration vector [rad/s^2] % electromagnetics % fields \newcommand {\E} {\vec{E}} % electric field intensity [V/m] \renewcommand {\H} {\vec{H}} % magnetic field intensity [A/m] \newcommand {\D} {\vec{D}} % electric flux density [C/m^2] \newcommand {\B} {\vec{B}} % magnetic flux density [Wb/m^2] % potentials \newcommand {\A} {\vec{A}} % vector potential [Wb/m], [C/m] % \F % electric vector potential [C/m], aliased % sources \newcommand {\I} {\vec{I}} % line current density [A] , [V] \newcommand {\J} {\vec{J}} % surface current density [A/m] , [V/m] \newcommand {\K} {\vec{K}} % volume current density [A/m^2], [V/m^2] % \M % magnetic current [V/m^2], aliased, obsolete % materials \newcommand {\ep} {\epsilon} % permittivity [F/m] % \mu % permeability [H/m], aliased \renewcommand {\P} {\vec{P}} % polarization [C/m^2], [Wb/m^2] % \p % electric dipole moment [C m], aliased \newcommand {\M} {\vec{M}} % magnetization [A/m], [V/m] \newcommand {\m} {\vec{m}} % magnetic dipole moment [A m^2] % power \renewcommand {\S} {\vec{S}} % poynting vector [W/m^2] \newcommand {\Sa} {\aa{\vec{S}}_t} % time averaged poynting vector [W/m^2] % quantum mechanics \newcommand {\bra} [1] {\left\langle {#1} \right|} % <| \newcommand {\ket} [1] {\left| {#1} \right\rangle} % |> \newcommand {\braket} [2] {\left\langle {#1} \middle| {#2} \right\rangle} $

This is a brief review of vector calculus.

Partial Derivatives

$$ \pd{A}{x} \equiv \lim_{\Delta x \rightarrow 0} \q{A(\ldots, x + \Delta x,\ldots) - A(\ldots, x, \ldots)}{\Delta x} $$ $$ \boxed{ dA = \sum_i \pd{A}{x_i} d x_i } $$ $$ \pdd{A}{x}{y} = \pdd{A}{y}{x} $$ $A(x, y, z)$

Curvilinear Coordinates

$u$ $v$ $w$ $f$ $g$ $h$
R $x$ $y$ $z$ $1$ $1$ $1$
C $\rho$ $\phi$ $z$ $1$ $\rho$ $1$
S $r$ $\theta$ $\phi$ $1$ $r$ $r\sin\theta$
$$ \r(u, v, w) = \ux x(u, v, w) + \uy y(u, v, w) + \uz z(u, v, w) $$ $$ \r = \ux x + \uy y + \uz z $$ $$ \vec{u} = \pd{\r}{u} $$ $$ \uvec{u} = \q{\vec{u}}{\mm{\vec{u}}} $$ $$ f = \mm{\vec{u}} $$ if orthogonal (which is assumed in these notes) $$ d\r = \pd{\r}{u} du + \pd{\r}{v} dv + \pd{\r}{w} dw $$ $$ \boxed{ d\r = \uvec{u} f du + \uvec{v} g dv + \uvec{w} h dw } $$

Integrals

Path Integral

$$ \dL = \uvec{u} f du + \uvec{v} g dv + \uvec{w} h dw $$ $$ \int_L \vec{F} \dot \dL \equiv \int_a^b \vec{F}(\r(t)) \dot \pd{\r}{t} dt $$ $$ \lim_{\Delta \vec{L} \rightarrow 0} \sum_i \vec{F}(\r_i) \dot \Delta \vec{L}_i = \int_L \vec{F} \dot \dL $$ $$ \oint_L \vec{F} \dot \dL = $$

Surface Integral

$$ \int_S \vec{F} \dot \dS $$ $$ \oint_S \vec{F} \dot \dS = $$

Volume Integral

$$ \lim_{\Delta V \rightarrow 0} \sum_i \rho(\r_i) \Delta V_i \equiv \int_V \rho dV $$ $$ dV = f du\, g dv\, h dw $$

Vector Derivatives

Gradient

$A(u, v, w)$ $$ dA = \pd{A}{u} du + \pd{A}{v} dv + \pd{A}{w} dw $$ $$ dA = \grad A \dot d\r $$ $$ \boxed{ \grad A \equiv \uvec{u} \q{1}{f} \pd{A}{u} + \uvec{v} \q{1}{g} \pd{A}{v} + \uvec{w} \q{1}{h} \pd{A}{w} } $$ $$ \boxed{ \del = \ux \pd{}{x} + \uy \pd{}{y} + \uz \pd{}{z} } $$

Divergence

$$ \boxed{ \div \vec{F} \equiv \lim_{\Delta V \rightarrow 0} \q{1}{\Delta V} \oint_S \vec{F} \dot \dS } $$ $$ \Delta V = f \Delta u\, g \Delta v\, h \Delta w $$ $$ \Delta \vec{S}_u = \uvec{u}\, g \Delta v\, h \Delta w; \quad \Delta \vec{S}_v = \uvec{v}\, h \Delta w\, f \Delta u; \quad \Delta \vec{S}_w = \uvec{w}\, f \Delta u\, g \Delta v $$ $$ \lim_{\Delta u \rightarrow 0} \lim_{\Delta v \rightarrow 0} \lim_{\Delta w \rightarrow 0} \q{1}{f \Delta u\,g \Delta v\,h \Delta w} [[\vec{F} \dot \Delta \vec{S}_u](u + \Delta u, v, w) - [\vec{F} \dot \Delta \vec{S}_u](u, v, w)] $$ $$ \q{1}{f g h} \lim_{\Delta u \rightarrow 0} \q{[F_u g h](u + \Delta u, v, w) - [F_u g h](u, v, w)}{\Delta u} = \q{1}{f g h} \pd{}{u}[F_u g h] $$ $$ \boxed{ \div \vec{F} = \q{1}{f g h} \bb{\pd{}{u} [F_u g h] + \pd{}{v} [f F_v h] + \pd{}{w} [f g F_w]} } $$

Curl

$$ \boxed{ [\curl \vec{F}] \dot \un \equiv \lim_{\Delta S \rightarrow 0} \q{1}{\Delta S} \oint_L \vec{F} \dot \dL } $$ $$ \Delta \vec{L}_u = \uvec{u} f \Delta u; \quad \Delta \vec{L}_v = \uvec{v} g \Delta v; \quad \Delta \vec{L}_w = \uvec{w} h \Delta w; $$ $$ \begin{split} \lim_{\Delta v \rightarrow 0} \lim_{\Delta w \rightarrow 0} \q{1}{g \Delta v h \Delta w} [& [\vec{F} \dot \Delta \vec{L}_w](u, v + \Delta v/2, w) - [\vec{F} \dot \Delta \vec{L}_v](u, v, w + \Delta w/2) \\ & - [\vec{F} \dot \Delta \vec{L}_w](u, v - \Delta v/2, w) + [\vec{F} \dot \Delta \vec{L}_v](u, v, w - \Delta w/2) ] \end{split} $$ $$ \begin{split} \q{1}{g h} \lim_{\Delta v \rightarrow 0} \lim_{\Delta w \rightarrow 0} \bigg[ &\q{[\vec{F} \dot \Delta \vec{L}_w](u, v + \Delta v/2, w) - [\vec{F} \dot \Delta %\vec{L}_w](u, v - \Delta v/2, w)}{\Delta v \Delta w} \\ &- \q{[\vec{F} \dot \Delta \vec{L}_v](u, v, w + \Delta w/2) - [\vec{F} \dot \Delta %\vec{L}_v](u, v, w - \Delta w/2)}{\Delta v \Delta w} \bigg] \end{split} $$ $$ \begin{split} \q{1}{g h} \bigg[ &\lim_{\Delta v \rightarrow 0} \q{[F_w h](u, v + \Delta v/2, w) - [F_w h](u, v - \Delta v/2, w)}{\Delta v} \\ &- \lim_{\Delta w \rightarrow 0} \q{[F_v g](u, v, w + \Delta w/2) - [F_v g](u, v, w - \Delta w/2)}{\Delta w} \bigg] \end{split} $$ $$ \q{1}{g h} \bb{\pd{}{v}[F_w h] - \pd{}{w}[F_v g]} $$ $$ \hspace{-1cm} \boxed{ \curl \vec{F} = \uvec{u}\!\q{1}{g h}\!\!\bb{\pd{}{v}\![h F_w]\!-\!\pd{}{w}\![g F_v]} \!+\!\uvec{v}\!\q{1}{f h}\!\!\bb{\pd{}{w}\![f F_u]\!-\!\pd{}{u}\![h F_w]} \!+\!\uvec{w}\!\q{1}{f g}\!\!\bb{\pd{}{u}\![h F_v]\!-\!\pd{}{v}\![f F_u]} } $$

Fundamental Theorems

Gradient Theorem

applies to curl-free (conservative) fields. mention divergence-free fields somewhere $$ \odt{} A(\r(t)) = \pd{A}{x} \od{x}{t} + \pd{A}{y} \od{y}{t} + \pd{A}{z} \od{z}{t} = \grad{A} \dot \od{\r}{t} $$ $$ \int_L \grad A \dot \dL = \int_a^b \grad A \dot \od{\r}{t} dt = \int_a^b \od{}{t} A(\r(t)) dt = A(\r(b)) - A(\r(a)) $$ $$ \boxed{ \int_{\vec{a}}^{\vec{b}} \grad A \dot \dL = A(\vec{b}) - A(\vec{a}) } $$

Divergence Theorem

$$ \begin{split} &= \int_V \div \vec{A} dV \\ &= \int_V \bb{\pd{A_x}{x} + \pd{A_y}{y} + \pd{A_z}{z}} dV \\ &= \int_{S_x} \bb{\int \pd{A_x}{x} dx} dS_x + \int_{S_y} \bb{\int \pd{A_y}{y} dy} dS_y + \int_{S_z} \bb{\int \pd{A_z}{z} dz} dS_z \\ &= \int_{S_x} [A_x - A_x] dS_x + \int_{S_y} [A_y - A_y] dS_y + \int_{S_z} [A_z - A_z] dS_z \\ &= \oint_S A_x dS_x + \oint_S A_y dS_y + \oint_S A_z dS_z \\ &= \oint_S [A_x dS_x + A_y dS_y + A_z dS_z] \\ &= \oint_S \vec{A} \dot \dS \end{split} $$ $$ \boxed{ \int_V \div \vec{F} dV = \oint_S \vec{F} \dot \dS } $$

Curl Theorem

lemma: green's theorem $$ \int_S \pd{A}{x} dS = \int \int \pd{A}{x} dx\,dy = \int [A - A] dy = \oint_L A dy $$ $$ \int_S \pd{B}{y} dS = -\oint_L B dx $$ $$ \int_S \bb{\pd{A}{x} - \pd{B}{y}} dS = \oint_L [A dx + B dy] $$ $$ \vec{S}(x, y) = \vec{S}(y, z) = \vec{S}(x, z) $$ $$ \vec{S}(x, y) = \ux x + \uy y + \uz z(x, y) $$ $$ d \vec{S}(x, y) = \pd{\vec{S}}{x} \cross \pd{\vec{S}}{y} = \bb{\ux + \uz \pd{z}{x}} \cross \bb{\uy + \uz \pd{z}{y}} = -\ux \pd{z}{x} - \uy \pd{z}{y} + \uz $$ $$ \hspace{-2cm} \begin{split} &= \int_S \curl \vec{A} \dot \dS \\ &= \int_S \bb{\bb{\pd{A_z}{y} - \pd{A_y}{z}} dS_x + \bb{\pd{A_x}{z} - \pd{A_z}{x}} dS_y + \bb{\pd{A_y}{x} - \pd{A_x}{y}} dS_z} \\ &= \int_S \bb{ \bb{\pd{A_x}{z} dS_y - \pd{A_x}{y} dS_z} +\bb{\pd{A_y}{x} dS_z - \pd{A_y}{z} dS_x} +\bb{\pd{A_z}{y} dS_x - \pd{A_z}{x} dS_y}} \\ &= \int_{S_x}\!\!\bb{\pd{A_x}{y} \pd{x}{z}\!-\!\pd{A_x}{z} \pd{x}{y}}\!dy dz +\!\!\int_{S_y}\!\!\bb{\pd{A_y}{z} \pd{y}{x}\!-\!\pd{A_y}{x} \pd{y}{z}}\!dx dz +\!\!\int_{S_z}\!\!\bb{\pd{A_z}{x} \pd{z}{y}\!-\!\pd{A_z}{y} \pd{z}{x}}\!dx dy \\ &= \oint_{L_x} A_x \bb{\pd{x}{y} dy + \pd{x}{z} dz} + \oint_{L_y} A_y \bb{\pd{y}{x} dx + \pd{y}{y} dz} + \oint_{L_z} A_z \bb{\pd{z}{x} dx + \pd{z}{y} dy} \\ &= \oint_L A_x dx + \oint_L A_y dy + \oint_L A_z dz \\ &= \oint_L [A_x dx + A_y dy + A_z dz] \\ &= \oint_L \vec{A} \dot \dL \\ \end{split} $$ $$ \boxed{ \int_S \curl \vec{A} \dot \dS = \oint_L \vec{A} \dot \dL } $$

Identities

Product Rules

\begin{align} & \grad [f g] = [\grad f] g + f [\grad g] \\ & \grad [\vec{A} \dot \vec{B}] = \vec{B} \cross [\curl \vec{A}] + [\vec{B} \dot \del] \vec{A} + \vec{A} \cross [\curl \vec{B}] + [\vec{A} \dot \del] \vec{B} \\ & \div [f \vec{A}] = [\grad f] \dot \vec{A} + f [\div \vec{A}] \\ & \div [\vec{A} \cross \vec{B}] = \vec{B} \dot [\curl \vec{A}] - \vec{A} \dot [\curl \vec{B}] \\ & \curl [f \vec{A}] = [\grad f] \cross \vec{A} + f [\curl \vec{A}] \\ & \curl [\vec{A} \cross \vec{B}] = \vec{A} [\div \vec{B}] - \vec{B} [\div \vec{A}] - [\vec{A} \dot \del] \vec{B} + [\vec{B} \dot \del] \vec{A} \end{align}

Second Derivatives

\begin{align} \del^2 \phi &\equiv \div \grad \phi \\ \div [\curl \vec{A}] &= 0 \\ \curl [\grad f] &= \vec{0} \\ \curl [\curl \vec{A}] &= \grad [\div \vec{A}] - \del^2 \vec{A} \end{align}

Delta Distribution

aka Dirac Delta $$ f(0) = \int_V f(\r') \delta(\r') dV' $$ $$ f(r) = -[4 \pi r]^{-1} $$ $$ \grad \bb{-\q{1}{4 \pi r}} = \ur \pd{}{r} \bb{-\q{1}{4 \pi r}} = \ur \q{1}{4 \pi r^2} $$ $$ \del^2 \bb{-\q{1}{4 \pi r}} = \div \grad \bb{-\q{1}{4 \pi r}} = \bb{\q{1}{r^2} \pd{}{r} r^2} \bb{\q{1}{4 \pi r^2}} = 0 $$ $$ \begin{split} \int_V \del^2 \bb{-\q{1}{4 \pi r}} dV &= \int_V \div \grad \bb{-\q{1}{4 \pi r}} dV \\ &= \int_S \grad \bb{-\q{1}{4 \pi r}} \dot \dS \\ &= \int_0^{\pi} \int_0^{2 \pi} \bb{\ur \q{1}{4 \pi r^2}} \dot [\ur r d \theta r \sin \theta d \phi] \\ &= \q{1}{4 \pi} \int_0^{\pi} \sin \theta d \theta \int_0^{2 \pi} d \phi \\ &= \q{1}{4 \pi} [-\cos \pi + \cos 0] [2 \pi - 0] \\ &= \q{1}{4 \pi} [2] [2 \pi] \\ &= 1 \end{split} $$ $$ \delta(\r) = -\del^2 [4 \pi r]^{-1} $$

Helmholtz Decomposition

$$ \boxed{ \R \equiv \r - \r' } $$ $$ \delta(\R) = -\del^2 [4 \pi R]^{-1} $$ $$ \vec{F}(\r) = \int_V \vec{F}(\r') \delta(\R) dV' $$ $$ \begin{split} \vec{F}(\r) &= \int_V \vec{F}(\r') \bb{-\q{1}{4 \pi} \del^2 R^{-1}} dV' \\ &= -\q{1}{4 \pi} \del^2 \int_V \vec{F} R^{-1} dV' \\ &= -\q{1}{4 \pi} [\grad \div - \curl \curl] \int_V \vec{F} R^{-1} dV' \\ &= -\q{1}{4 \pi} \bb{\grad \div \int_V \vec{F} R^{-1} dV' - \curl \curl \int_V \vec{F} R^{-1} dV'} \\ &= -\q{1}{4 \pi} \bb{\grad \int_V \vec{F} \div R^{-1} dV' - \curl \int_V \vec{F} \curl R^{-1} dV'} \\ &= \q{1}{4 \pi} \bb{\grad \int_V \vec{F} \del' \dot R^{-1} dV' - \curl \int_V \vec{F} \del' \cross R^{-1} dV'} \\ &= -\grad \phi + \curl \vec{A} \\ \end{split} $$ $$ \begin{split} \phi(\r) &\equiv -\q{1}{4 \pi} \int_V \vec{F}(\r') \del' \dot R^{-1} dV' \\ &= -\q{1}{4 \pi} \int_V [\del' \dot [\vec{F} R^{-1}] - [\del' \dot \vec{F}] R^{-1}] dV' \\ &= -\q{1}{4 \pi} \bb{\oint_S \q{\vec{F} \dot \dS}{R} - \int_V \q{\del' \dot \vec{F}}{R} dV'} \end{split} $$ $$ \begin{split} \vec{A}(\r) &\equiv -\q{1}{4 \pi} \int_V \vec{F}(\r') \del' \cross R^{-1} dV' \\ &= -\q{1}{4 \pi} \int_V [\del' \cross [\vec{F} R^{-1}] - [\del' \cross \vec{F}] R^{-1}] dV' \\ &= -\q{1}{4 \pi} \bb{-\oint_S \q{\vec{F} \cross \dS}{R} - \int_V \q{\del' \cross \vec{F}}{R} dV'} \\ \end{split} $$ $$ \int^\infty \q{X(r')}{r'} r'^2 dr' = \int^\infty X(r') r' dr' $$ $$ \vec{F} = -\grad \phi + \curl \vec{A} $$ $$ \phi(\r) = \q{1}{4 \pi} \int_V \q{\del' \dot \vec{F}}{R} dV' $$ $$ \vec{A}(\r) = \q{1}{4 \pi} \int_V \q{\del' \cross \vec{F}}{R} dV' $$

Curlless Fields

$$ \curl \vec{A} = \vec{0} $$ $$ \vec{A} = -\grad f $$ $$ \oint_L \vec{A} \dot \dL = 0 $$ path integral independent of path

Divergenceless Fields

$$ \div \vec{A} = 0 $$ $$ \vec{A} = \curl \vec{F} $$ $$ \oint_S \vec{A} \dot \dS = 0 $$ surface integral independent of surface

Lemmas

$$ \begin{split} \grad R^n &= \grad [\R \dot \R]^\q{n}{2} \\ &= \grad [[\r - \r'] \dot [\r - \r']]^\q{n}{2} \\ &= \sum_j \ux_j \pd{}{x_j} \bb{\sum_i [x_i - x_i']^2}^\q{n}{2} \\ &= \sum_j \ux_j \q{n}{2} \bb{\sum_i [x_i - x_i']^2}^{\q{n}{2} - 1} \pd{}{x_j} \bb{\sum_i [x_i - x_i']^2} \\ &= \sum_j \ux_j \q{n}{2} \bb{\sum_i [x_i - x_i']^2}^{\q{n}{2} - 1} \sum_i \pd{}{x_j} [x_i - x_i']^2 \\ &= \sum_j \ux_j \q{n}{2} \bb{\sum_i [x_i - x_i']^2}^{\q{n}{2} - 1} \sum_i 2 [x_i - x_i'] \pd{}{x_j}[x_i - x_i'] \\ &= \sum_j \ux_j \q{n}{2} \bb{\sum_i [x_i - x_i']^2}^{\q{n}{2} - 1} \sum_i 2 [x_i - x_i'] \pd{x_i}{x_j} \\ &= \sum_j \ux_j \q{n}{2} \bb{\sum_i [x_i - x_i']^2}^{\q{n}{2} - 1} \sum_i 2 [x_i - x_i'] \delta_{ij} \\ &= \sum_j \ux_j \q{n}{2} \bb{\sum_i [x_i - x_i']^2}^{\q{n}{2} - 1} 2 [x_j - x_j'] \\ &= n \bb{\sum_i [x_i - x_i']^2}^{\q{n}{2} - 1} \sum_j \ux_j [x_j - x_j'] \\ &= n \bb{\R \dot \R}^{\q{n}{2} - 1} \R \\ &= n [\R \dot \R]^{\q{1}{2}[n - 2]} \R \\ &= n R^{n - 2} \R \\ &= n R^{n - 1} \uR \\ \end{split} $$ $$ \boxed{ \grad R^n = n R^{n - 1} \uR } $$ $\div [\uR / R^2]$ $$ \div \bb{\q{\uR}{R^2}} = [\grad R^{-3}] \dot \R + R^{-3} \div \R = [-3 R^{-4} \uR] \dot \R + R^{-3} [3] = 0 $$ $\r' = \vec{0}$ $$ \int_V \div \bb{\q{\ur}{r^2}} dV' = \oint_S \bb{\q{\ur}{r^2}} \dot \dS' $$ $\dS' = r d\theta r \sin\theta d\phi \ur$ $$ \int_0^{2 \pi} \int_0^\pi \bb{\q{\ur}{r^2}} \dot [r d\theta r \sin\theta d\phi \ur] = \int_0^{2 \pi} d\phi \int_0^\pi \sin \theta d\theta = 2 \pi [-\cos\pi + \cos 0] = 4 \pi $$ $$ \div \bb{\q{\ur}{r^2}} = 4 \pi \delta(\r) $$ $$ \boxed{ \div \bb{\q{\uR}{R^2}} = 4 \pi \delta(\R) } $$ $\curl [\uR / R^2]$ $$ \curl \bb{\q{\R}{R^3}} = \grad R^{-3} \cross \R + R^{-3} \curl \R = -3 R^{-4} \uR \cross \R + R^{-3} \vec{0} = \vec{0} $$ $$ \boxed{ \curl \bb{\q{\uR}{R^2}} = \vec{0} } $$ Multipole expansion $$ R^2 = r^2 + r'^2 - 2 r r' \cos \theta = r^2 \bb{1 + \bb{\q{r'}{r}}^2 - 2 \bb{\q{r'}{r}} \cos \theta} = r^2 [1 + \epsilon] $$ $$ \epsilon \equiv \bb{\q{r'}{r}} \bb{\q{r'}{r} - 2 \cos \theta} $$ Taylor expand (binomial theorem), see Calculus review $$ [1 + x]^p = \sum_{n=0}^{\infty} \begin{pmatrix} p \\ n \end{pmatrix} x^n \quad\text{where}\quad \begin{pmatrix} p \\ n \end{pmatrix} \equiv \q{1}{n!} \prod_{m=1}^n [p - m + 1] $$ $$ \q{1}{R} = \q{1}{r} [1 + \epsilon]^{-\q{1}{2}} = \q{1}{r} \bb{1 - \q{1}{2} \epsilon + \q{3}{8} \epsilon^2 - \q{5}{16} \epsilon^3 + \ldots} $$ $$ \q{1}{R} = \q{1}{r} \bb{ 1 - \q{1}{2} \bb{\q{r'}{r}} \bb{\q{r'}{r} - 2 \cos \theta} + \q{3}{8} \bb{\q{r'}{r}}^2 \bb{\q{r'}{r} - 2 \cos \theta}^2 - \q{5}{16} \bb{\q{r'}{r}}^3 \bb{\q{r'}{r} - 2 \cos \theta}^3 + \ldots} $$ $$ \q{1}{R} = \q{1}{r} \bb{ 1 + \bb{\q{r'}{r}} \cos \theta + \bb{\q{r'}{r}}^2 \q{1}{2} \bb{-1 + 3 \cos^2 \theta} + \bb{\q{r'}{r}}^3 \q{1}{2} \bb{-3 \cos \theta + 5 \cos^3 \theta} + \ldots} $$ $$ \boxed{ \q{1}{R} = \q{1}{r} \sum_{n=0}^{\infty} \bb{\q{r'}{r}}^n P_n(\cos \theta) } $$
Legendre Polynomials
$P_0(x) = 1$
$P_1(x) = x$
$P_2(x) = \q{1}{2} [-1 + 3x^2]$
$P_3(x) = \q{1}{2} [-3 x + 5 x^3]$
$P_4(x) = \q{1}{8} [3 - 30 x^2 + 35 x^4]$
$P_5(x) = \q{1}{8} [15 x - 70 x^3 + 63^5]$
others $$ \int_S [\curl [f \vec{c}]] \dot \dS = \oint_L [f \vec{c}] \dot \dL $$ $\curl [f \vec{A}] = \grad f \cross \vec{A} + f \curl \vec{A}$ $$ \int_S [\grad f \cross \vec{c}] \dot \dS = \int_S [\dS \cross \grad f] \dot \vec{c} = \vec{c} \dot \oint_L f \dL $$ $$ \boxed{ \int_S \grad f \cross \dS = -\oint_L f \dL } $$ $$ \int_S \grad [\vec{c} \dot \r] \cross \dS = -\oint_L [\vec{c} \dot \r] \dL $$ $\grad [\vec{A} \dot \vec{B}] = \vec{B} \cross [\curl \vec{A}] + [\vec{B} \dot \del] \vec{A} + \vec{A} \cross [\curl \vec{B}] + [\vec{A} \dot \del] \vec{B}$ $$ \int_S [\vec{c} \cross [\curl \r] + [\vec{c} \dot \del] \r] \cross \dS = \vec{c} \cross \int_S \dS = -\oint_L [\vec{c} \dot \r] \dL $$ $\curl \r = \vec{0}$, $[\vec{c} \dot \del] \r = \vec{c}$ $$ \vec{a} \equiv \int_S \dS $$ $$ \boxed{ \oint_L [\vec{c} \dot \r] \dL = \vec{a} \cross \vec{c} } $$ another $$ \int_V \div [\vec{A} \cross \vec{c}] dV = \oint_S [\vec{A} \cross \vec{c}] \dot \dS $$ $$ \int_V \vec{c} \dot \curl \vec{A} dV = \oint_S [\dS \cross \vec{A}] \dot \vec{c} $$ $\div [\vec{A} \cross \vec{B}] = \vec{B} \dot \curl \vec{A} - \vec{A} \dot \curl \vec{B}$ $$ \boxed{ \int_V \curl \vec{A} dV = -\oint_S \vec{A} \cross \dS } $$

References