Calculus

$ % macros % MathJax \newcommand{\bigtimes}{\mathop{\vcenter{\hbox{$\Huge\times\normalsize$}}}} % prefix with \! and postfix with \!\! % sized grouping symbols \renewcommand {\aa} [1] {\left\langle {#1} \right\rangle} % <> angle brackets \newcommand {\bb} [1] {\left[ {#1} \right]} % [] brackets \newcommand {\cc} [1] {\left\{ {#1} \right\}} % {} curly braces \newcommand {\mm} [1] {\lVert {#1} \rVert} % || || double norm bars \newcommand {\nn} [1] {\lvert {#1} \rvert} % || norm bars \newcommand {\pp} [1] {\left( {#1} \right)} % () parentheses % unit \newcommand {\unit} [1] {\bb{\mathrm{#1}}} % measurement unit % math \newcommand {\fn} [1] {\mathrm{#1}} % function name % sets \newcommand {\setZ} {\mathbb{Z}} \newcommand {\setQ} {\mathbb{Q}} \newcommand {\setR} {\mathbb{R}} \newcommand {\setC} {\mathbb{C}} % arithmetic \newcommand {\q} [2] {\frac{#1}{#2}} % quotient, because fuck \frac % trig \newcommand {\acos} {\mathrm{acos}} % \mathrm{???}^{-1} is misleading \newcommand {\asin} {\mathrm{asin}} \newcommand {\atan} {\mathrm{atan}} \newcommand {\atantwo} {\mathrm{atan2}} % at angle = atan2(y, x) \newcommand {\asec} {\mathrm{asec}} \newcommand {\acsc} {\mathrm{acsc}} \newcommand {\acot} {\mathrm{acot}} % complex numbers \newcommand {\z} [1] {\tilde{#1}} \newcommand {\conj} [1] {{#1}^\ast} \renewcommand {\Re} {\mathfrak{Re}} % real part \renewcommand {\Im} {\mathrm{I}\mathfrak{m}} % imaginary part % quaternions \newcommand {\quat} [1] {\tilde{\mathbf{#1}}} % quaternion symbol \newcommand {\uquat} [1] {\check{\mathbf{#1}}} % versor symbol \newcommand {\gquat} [1] {\tilde{\boldsymbol{#1}}} % greek quaternion symbol \newcommand {\guquat}[1] {\check{\boldsymbol{#1}}} % greek versor symbol % vectors \renewcommand {\vec} [1] {\mathbf{#1}} % vector symbol \newcommand {\uvec} [1] {\hat{\mathbf{#1}}} % unit vector symbol \newcommand {\gvec} [1] {\boldsymbol{#1}} % greek vector symbol \newcommand {\guvec} [1] {\hat{\boldsymbol{#1}}} % greek unit vector symbol % special math vectors \renewcommand {\r} {\vec{r}} % r vector [m] \newcommand {\R} {\vec{R}} % R = r - r' difference vector [m] \newcommand {\ur} {\uvec{r}} % r unit vector [#] \newcommand {\uR} {\uvec{R}} % R unit vector [#] \newcommand {\ux} {\uvec{x}} % x unit vector [#] \newcommand {\uy} {\uvec{y}} % y unit vector [#] \newcommand {\uz} {\uvec{z}} % z unit vector [#] \newcommand {\urho} {\guvec{\rho}} % rho unit vector [#] \newcommand {\utheta} {\guvec{\theta}} % theta unit vector [#] \newcommand {\uphi} {\guvec{\phi}} % phi unit vector [#] \newcommand {\un} {\uvec{n}} % unit normal vector [#] % vector operations \newcommand {\inner} [2] {\left\langle {#1} , {#2} \right\rangle} % <,> \newcommand {\outer} [2] {{#1} \otimes {#2}} \newcommand {\norm} [1] {\mm{#1}} \renewcommand {\dot} {\cdot} % dot product \newcommand {\cross} {\times} % cross product % matrices \newcommand {\mat} [1] {\mathbf{#1}} % matrix symbol \newcommand {\gmat} [1] {\boldsymbol{#1}} % greek matrix symbol % ordinary derivatives \newcommand {\od} [2] {\q{d #1}{d #2}} % ordinary derivative \newcommand {\odn} [3] {\q{d^{#3}{#1}}{d{#2}^{#3}}} % nth order od \newcommand {\odt} [1] {\q{d{#1}}{dt}} % time od % partial derivatives \newcommand {\de} {\partial} % partial symbol \newcommand {\pd} [2] {\q{\de{#1}}{\de{#2}}} % partial derivative \newcommand {\pdn} [3] {\q{\de^{#3}{#1}}{\de{#2}^{#3}}} % nth order pd \newcommand {\pdd} [3] {\q{\de^2{#1}}{\de{#2}\de{#3}}} % 2nd order mixed pd \newcommand {\pdt} [1] {\q{\de{#1}}{\de{t}}} % time pd % vector derivatives \newcommand {\del} {\nabla} % del \newcommand {\grad} {\del} % gradient \renewcommand {\div} {\del\dot} % divergence \newcommand {\curl} {\del\cross} % curl % differential vectors \newcommand {\dL} {d\vec{L}} % differential vector length [m] \newcommand {\dS} {d\vec{S}} % differential vector surface area [m^2] % special functions \newcommand {\Hn} [2] {H^{(#1)}_{#2}} % nth order Hankel function \newcommand {\hn} [2] {H^{(#1)}_{#2}} % nth order spherical Hankel function % transforms \newcommand {\FT} {\mathcal{F}} % fourier transform \newcommand {\IFT} {\FT^{-1}} % inverse fourier transform % signal processing \newcommand {\conv} [2] {{#1}\ast{#2}} % convolution \newcommand {\corr} [2] {{#1}\star{#2}} % correlation % abstract algebra \newcommand {\lie} [1] {\mathfrak{#1}} % lie algebra % other \renewcommand {\d} {\delta} % optimization %\DeclareMathOperator* {\argmin} {arg\,min} %\DeclareMathOperator* {\argmax} {arg\,max} \newcommand {\argmin} {\fn{arg\,min}} \newcommand {\argmax} {\fn{arg\,max}} % waves \renewcommand {\l} {\lambda} % wavelength [m] \renewcommand {\k} {\vec{k}} % wavevector [rad/m] \newcommand {\uk} {\uvec{k}} % unit wavevector [#] \newcommand {\w} {\omega} % angular frequency [rad/s] \renewcommand {\TH} {e^{j \w t}} % engineering time-harmonic function [#] % classical mechanics \newcommand {\F} {\vec{F}} % force [N] \newcommand {\p} {\vec{p}} % momentum [kg m/s] % \r % position [m], aliased \renewcommand {\v} {\vec{v}} % velocity vector [m/s] \renewcommand {\a} {\vec{a}} % acceleration [m/s^2] \newcommand {\vGamma} {\gvec{\Gamma}} % torque [N m] \renewcommand {\L} {\vec{L}} % angular momentum [kg m^2 / s] \newcommand {\mI} {\mat{I}} % moment of inertia tensor [kg m^2/rad] \newcommand {\vw} {\gvec{\omega}} % angular velocity vector [rad/s] \newcommand {\valpha} {\gvec{\alpha}} % angular acceleration vector [rad/s^2] % electromagnetics % fields \newcommand {\E} {\vec{E}} % electric field intensity [V/m] \renewcommand {\H} {\vec{H}} % magnetic field intensity [A/m] \newcommand {\D} {\vec{D}} % electric flux density [C/m^2] \newcommand {\B} {\vec{B}} % magnetic flux density [Wb/m^2] % potentials \newcommand {\A} {\vec{A}} % vector potential [Wb/m], [C/m] % \F % electric vector potential [C/m], aliased % sources \newcommand {\I} {\vec{I}} % line current density [A] , [V] \newcommand {\J} {\vec{J}} % surface current density [A/m] , [V/m] \newcommand {\K} {\vec{K}} % volume current density [A/m^2], [V/m^2] % \M % magnetic current [V/m^2], aliased, obsolete % materials \newcommand {\ep} {\epsilon} % permittivity [F/m] % \mu % permeability [H/m], aliased \renewcommand {\P} {\vec{P}} % polarization [C/m^2], [Wb/m^2] % \p % electric dipole moment [C m], aliased \newcommand {\M} {\vec{M}} % magnetization [A/m], [V/m] \newcommand {\m} {\vec{m}} % magnetic dipole moment [A m^2] % power \renewcommand {\S} {\vec{S}} % poynting vector [W/m^2] \newcommand {\Sa} {\aa{\vec{S}}_t} % time averaged poynting vector [W/m^2] % quantum mechanics \newcommand {\bra} [1] {\left\langle {#1} \right|} % <| \newcommand {\ket} [1] {\left| {#1} \right\rangle} % |> \newcommand {\braket} [2] {\left\langle {#1} \middle| {#2} \right\rangle} $

This is a brief review of calculus. This needs a lot of work.

Topics

Limits

$$ \lim_{x \rightarrow c} f(x) = L \Leftrightarrow [\forall \epsilon > 0, \exists \delta > 0, \forall x \in D] [0 < \nn{x - c} < \delta \Rightarrow \nn{f(x) - L} < \epsilon] $$ $$ L = \lim_{x \rightarrow c} f(x) $$ $$ \lim_{x \rightarrow c} [\alpha f(x) + \beta g(x)] = \alpha \bb{\lim_{x \rightarrow c} f(x)} + \beta \bb{\lim_{x \rightarrow c} g(x)} $$ $$ \lim_{x \rightarrow c} [f(x) g(x)] = \bb{\lim_{x \rightarrow c} f(x)} \bb{\lim_{x \rightarrow c} g(x)} $$ $$ f(c) = \lim_{x \rightarrow c} f(x) $$

Derivatives

Derivatives quantify rates of change of a function with respect to a dependent variable.

Definition

The derivative of function $f: \setR \rightarrow \setR$ $$ \boxed{ \od{}{x} f(x) \equiv \lim_{\Delta x \rightarrow 0} \q{f(x + \Delta x) - f(x)}{\Delta x} } $$

Linearity

$$ \boxed{ \od{}{x}[\alpha f(x) + \beta g(x)] = \alpha \od{f}{x} + \beta \od{g}{x} } $$

Product Rule

$$ \lim_{\Delta x \rightarrow 0} \q{\Delta[f g]}{\Delta x} = \lim_{\Delta x \rightarrow 0} \q{[f + \Delta f][g + \Delta g] - f g}{\Delta x} = \lim_{\Delta x \rightarrow 0} \bb{\q{\Delta f}{\Delta x} g + f \q{\Delta g}{\Delta x} + \q{\Delta f \Delta g}{\Delta x}} $$ $$ \boxed{ \od{}{x} [f g] = \od{f}{x} g + f \od{g}{x} } $$

Chain Rule

$$ \lim_{\Delta x \rightarrow 0} \q{\Delta [f(g(x))]}{\Delta x} = \lim_{\Delta x \rightarrow 0} \bb{\q{g(x + \Delta x) - g(x)}{\Delta x}} \bb{\q{f(g(x + \Delta x)) - f(g(x))}{g(x + \Delta x) - g(x)}} $$ $$ \boxed{ \od{}{x} f(g(x)) = \od{g}{x} \od{f}{g} } $$

Useful Derivatives

$$ \od{}{x} x^n = n x^{n - 1} $$ $$ \od{}{x} \sin x = \cos x $$ $$ \od{}{x} \cos x = -\sin x $$ $$ \od{}{x} e^x = e^x $$

Integrals

Definition

$$ \boxed{ \int_a^b f(x) dx \equiv \lim_{\Delta x_i \rightarrow 0}\sum_i f(x_i) \Delta x_i } $$

Properties

Linearity $$ \boxed{ \int_a^b [\alpha f(x) + \beta g(x)] dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx } $$ $$ \boxed{ \int_a^c f dx = \int_a^b f dx + \int_b^c f dx } $$ $$ \boxed{ -\int_a^b f dx = \int_b^a f dx } $$

Delta Distribution

$$ f(x) = \int_{-\infty}^\infty f(x') \delta(x' - x) dx' $$

Fundamental Theorem

$$ \boxed{ F(x) = \int_{x_0}^x f(x') dx' } $$ $$ F(x + \Delta x) - F(x) = \bb{\int_{x_0}^{x + \Delta x} f dx'} - \bb{\int_{x_0}^x f dx'} = \int_x^{x + \Delta x} f dx' = f(c) \Delta x $$ $$ \od{F}{x} = \lim_{\Delta x \rightarrow 0} \q{F(x + \Delta x) - F(x)}{\Delta x} = f(x) $$ $$ \boxed{ f(x) = \od{}{x} \int_{x_0}^x f(x') dx' } $$ $$ \boxed{ \int_a^b f(x) dx = F(b) - F(a) } $$

Integration by Parts

$$ \int_a^b \bb{\od{f}{x} g + f \od{g}{x}} dx = \int_a^b \od{}{x} [f g] dx = f g |_{x=a}^b $$ $$ \boxed{ \int_a^b f \od{g}{x} dx = f g |_a^b -\int_a^b \od{f}{x} g dx } $$

Integration by Substitution

$$ \int_a^b f(u(x)) \od{u}{x} dx = \int_a^b \od{}{x} [F(u(x))] dx = F(u(b)) - F(u(a)) = \int_{u(a)}^{u(b)} f(u) du $$ $$ \boxed{ \int_a^b f(u(x)) \od{u}{x} dx = \int_{u(a)}^{u(b)} f(u) du \quad\text{where}\quad u(x),\; du = \od{u}{x} dx } $$

Taylor Expansion

$$ f(x) = \sum_{n = 0}^\infty \alpha_n [x - x_0]^n $$ $$ f(x_0) = \alpha_0 + \alpha_1 0^1 + \alpha_2 0^2 + \alpha_3 0^3 + \alpha_4 0^4 \dots $$ $$ \od{f}{x}(x_0) = \alpha_1 1 + \alpha_2 2 \cdot 0^1 + \alpha_3 3 \cdot 0^2 + \alpha_4 4 \cdot 0^3 \dots $$ $$ \odn{f}{x}{2}(x_0) = \alpha_2 2 \cdot 1 + \alpha_3 3 \cdot 2 \cdot 0^1 + \alpha_4 4 \cdot 3 \cdot 0^2 + \dots $$ $$ \boxed{ f(x) = \sum_{n = 0}^\infty \q{1}{n!} \odn{f}{x}{n} (x_0) [x - x_0]^n } $$ $n! \equiv \prod_{m=1}^n m$ $$ \cos x = \sum_{n = 0}^{\infty} [-1]^n \q{x^{2n}}{[2n]!} = \q{x^0}{0!} - \q{x^2}{2!} + \q{x^4}{4!} - \q{x^6}{6!} + O(x^8) $$ $$ \sin x = \sum_{n = 0}^{\infty} [-1]^n \q{x^{2n + 1}}{[2n + 1]!} = \q{x^1}{1!} - \q{x^3}{3!} + \q{x^5}{5!} - \q{x^7}{7!} + O(x^9) $$ $$ e^x = \sum_{n = 0}^{\infty} \q{x^n}{n!} = \q{x^0}{0!} + \q{x^1}{1!} + \q{x^2}{2!} + \q{x^3}{3!} + O(x^4) $$ $$ e^{j x} = \sum_{n=0}^{\infty} \q{[j x]^n}{n!} = \q{x^0}{0!} + j \q{x^1}{1!} - \q{x^2}{2!} - j \q{x^3}{3!} + O(x^4) $$ $$ \boxed{ e^{j \phi} = \cos \phi + j \sin \phi } $$ $$ [1 + x]^p = \sum_{n=0}^{\infty} \begin{pmatrix} p \\ n \end{pmatrix} x^n \quad\text{where}\quad \begin{pmatrix} p \\ n \end{pmatrix} \equiv \q{1}{n!} \prod_{m=1}^n [p - m + 1] $$ $$ [1 + x]^{\q{1}{2}} = 1 + \q{1}{2} x - \q{1}{8} x^2 + \q{1}{16} x^3 + O(x^4) $$

Complexity

$$ f(x) = O(c(x)) \Leftrightarrow x \geq x_0 \wedge f(x) \leq k c(x) $$ $$ f(x) = \Omega(c(x)) \Leftrightarrow x \geq x_0 \wedge f(x) \geq k c(x) $$ $$ f(x) = \Theta(c(x)) \Leftrightarrow f(x) = O(c(x)) = \Omega(c(x)) $$ $$ f(x) = o(c(x)) \Leftrightarrow f(x) = O(c(x)) \neq \Omega(c(x)) $$

2nd Order ODE

$$ \bb{a \odn{}{t}{2} + b \od{}{t} + c} f(t) = s(t) $$ remember to talk about BCs

References

[todo]