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Stitching 3D Millimeter Wave Images of a Person
in Motion

K. Parker Trofatter, Jonah N. Gollub, and David R. Smith

Abstract—3D millimeter wave imaging systems are indispens-
able for security screening applications. Available imagers are
constrained to imaging only one person at a time and require
people to strike and hold a pose during measurement. This is both
inconvenient and introduces a security checkpoint bottleneck.
Recently, an experimental millimeter wave imager based on com-
putational imaging principles has been demonstrated with a near-
video shutter speed. This allows people to move during imaging,
promising to significantly boost screening throughput. However,
applying automatic threat detection to images of a person in
motion is complicated by deformation of the human body and
specularity-limited coverage characteristic of millimeter wave
imaging. One strategy to address both issues is to combine
multiple images into a single composite stitch. Here, we develop a
model to stitch images of a person in motion. We systematically
demonstrate in experiment and simulation this approach and
advocate that it can be applicable to any real-time 3D imaging
system.

Index Terms—computer graphics applications, interaction
techniques, sampling, registration, image models, motion, sensor
fusion

I. INTRODUCTION

REAL-TIME 3D imaging systems measure and stream
tremendous amounts of data about their environment.

Taking advantage of these sensors at the same rate they
produce raw data requires computationally efficient techniques
to reconstruct, analyze, and represent high-level scene content.
This challenge is compounded by the push for multi-sensor
fusion in emerging technologies, such as sensor suites in
smartphones and wearable devices [1]; depth cameras [2]; and
video, radar, and lidar systems of autonomous vehicles [3].

An important application at the forefront of 3D imaging
and data processing technology is millimeter wave security
screening [4]. Millimeter waves are a form of electromagnetic
radiation particularly suited for screening people because they
safely penetrate clothing while strongly reflecting off skin and
concealed threat objects [5]. Millimeter wave imagers require
large apertures to form images of people with millimeter
resolution. Commercially available systems accomplish this
with a dense array of stationary antennas [6], or by synthetic
aperture radar (SAR) with a mechanically scanned antenna
array [7]. However, these approaches have been limited to
imaging individual people and requiring that people strike
and hold a pose during imaging, presenting a throughput
bottleneck. Interest has grown in screen-while-walk systems
that allow people to move freely through the imaging volume
during measurement [8]. Recently, a screen-while-walk mil-
limeter wave imager was experimentally demonstrated with
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an inexpensive and scalable modular architecture based on
computational imaging principles [9].

Modular screen-while-walk imaging systems invite a full
reevaluation of security screening. Deployment options are
expanded by relaxing assumptions about the configuration of
the aperture and how people interact with the device. For
instance, systems unobtrusively installed at portals and along
corridors can opportunistically image passerbys. At a lower
cost point, multiple checkpoints become feasible, which could
cooperatively build models of people in an area. Increased
screening throughput and distributed sensor networks would
prevent vulnerable crowds from forming at checkpoints, and
could move the secure area boundary outside critical infras-
tructure such as airport terminals.

Relaxing control over the imaging environment and al-
lowing people to move comes at the price of complicating
automatic threat detection (ATD). Of central concern is the de-
formation of the human body while it is in motion. A standard
approach for ATD is training machine learning algorithms for
anomaly detection [10]. Conceptually, ATD could be trained
on data of people in different poses with and without threat
objects, however direct application of this idea is intractable
because the space of human poses is enormous. Addition-
ally, active illumination millimeter wave imagers suffer from
specularity-limited coverage in which reflective objects smooth
on the scale of the probing wavelengths appear mirror-like.
This limits the visibility of specular surfaces to highlights that
satisfy the law of reflection with the probing antennas. As the
human body and many threat objects are smooth on millimeter
scales, this can cause significant reduction in scene coverage
for any single image, which ATD must contend with. Commer-
cial systems mitigate specularity-limited coverage with careful
aperture design and human posing restrictions.

The observation can be made that the motion of a person
through a screen-while-walk imager supplies many views of
the person with different coverage. Intuitively, these images
can be stitched together to produce a single image with
better coverage, which may be easier to process with ATD.
While the idea is simple, it is not clear how to combine
multiple images of a deformable body into a single image
in real-time. We address the stitching problem as it applies
to the computational imager, and systematically develop a
model for stitching people in motion through experiment and
simulation. Conceptually the technique can be applied to other
3D imagers.

This document is divided into 6 sections. Section II intro-
duces the experimental millimeter wave computational imag-
ing system and imaging model, and general observations
about reconstructed images are made. Section III discusses
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Fig. 1. Experimental Millimeter Wave Imaging System — A modular array
of stationary antennas images a scene. The antenna radiation patterns have
low spatial correlation as a function of frequency. Backscattered transceiver
measurements between pairs of antennas encodes scene information related to
a physical forward model. Images are reconstructed by inverting the model.

the fundamental stitching tasks of registration, calibration, and
blending, and how they relate to the experimental imager.
Section IV develops and experimentally demonstrates proce-
dures to stitch scenes undergoing rigid body motion. Section V
extends these ideas to stitch images of a person in motion using
a skeleton model. Crude but promising experimental results
are obtained with a depth camera, lending credibility to the
technique. A more compelling stitching model incorporating
deformation is then developed and demonstrated in simulation.
Section VI summarizes the stitching techniques covered and
identifies key areas of research going forward.

II. MILLIMETER WAVE COMPUTATIONAL IMAGER

We advocate that the stitching procedure covered in this
paper has general application to the challenges of using a
3D sensor to monitor a scene. The motivation for this work
stems specifically from research on an experimental millimeter
wave imaging system that is notable for having a shutter
speed fast enough to image people in motion, and the advent
of reconstruction algorithms that can operate in real-time. A
number of enabling technologies were developed to realize the
millimeter wave system, unified by the theme of computational
imaging. Understanding how the system functions is important
to interpreting images and developing a stitching strategy.

Computational imaging permits rethinking the hardware
layer of conventional imaging systems. Traditional imaging
relies on the sensor hardware for both measuring information
about a scene and forming an image, such as how a digital
camera focuses light from a scene onto a pixel detector array
which directly records an illuminance. In contrast, computa-
tional imaging relaxes the role of the sensor to only measuring

Fig. 2. Imaging Forward Model — Predict transceiver measurement g given
a volume V with conductivity distribution σ(r) excited by Tx electric field
Etx(r, ω) and sensed by Rx electric field Erx(r, ω) at frequency ω

information about a scene, relying on post-processing to
reconstruct an image. This dramatically increases the design
space of sensors and measurement modalities, and deftly
leverages the aggressive growth of computer technology [11].
For instance at optical frequencies, a coded aperture imaging
system consisting of a single pixel detector that collects light
through a reconfigurable mask can, with enough measurements
using different masks, reconstruct images similar to those
formed by a camera with a focal plane array [12], [13].
While the benefit and utility of simplifying inexpensive camera
hardware in the optical regime may be questionable, for
expensive microwave transceiver hardware the savings can be
substantial and fundamentally enabling.

For our experimental millimeter wave imager, a coded
aperture approach is used to implement a cost-effective and
real-time imaging solution [14], [15], [16]. The key is to use
antennas with radiation patterns that have low spatial correla-
tion as a function of driving frequency [17]. A frequency swept
transceiver can then rapidly measure scene information [18].
The number of antennas and frequency bandwidth is optimized
for personnel security screening. The experimental imager
uses 24 transmit (Tx) antennas, 72 receive (Rx) antennas,
and 101 frequency points over K-band to give more than
175,428 unique measurement combinations to roughly match
the number of resolution limited voxels a person occupies[19].
Serially measuring this many combinations is time consuming,
so a multiplexed strategy based on binary phase-shift keying
is employed to measure in parallel. Real-time shutter rates of
7 Hz have been experimentally demonstrated, and up to 100
Hz are possible [9].

Image reconstruction is cast in terms of an inverse scat-
tering problem. The forward scattering problem is to predict
transceiver measurements between Rx-Tx pairs for a given vol-
umetric scene conductivity distribution (Figure 2). In general,
fully simulating this problem is computationally prohibitive for
real time applications, so simplifying assumptions are made.
In particular, the scene is assumed to be composed of non-
magnetic, isotropic, and non-dispersive material; and multi-
scattering is ignored by invoking the first Born approximation.
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Fig. 3. Reconstructed 3D Image — A typical reconstructed image of a
conductive mannequin. Images consist mostly of surfaces embedded within
the imaging volume. Note the limited coverage due to specularity.

This results in the linear equation [20]

gijk =

∫
V

Etx,i(r, ωk) · σ(r)Erx,j(r, ωk) dV. (1)

where g is the predicted transceiver measurement, V is the
imaging volume, σ is the scene conductivity distribution, and
Erx and Etx are the Rx and Tx antenna electric field radiation
patterns respectively. Measurements are indexed by a set of
Rx antennas i ∈ R, a set of Tx antennas j ∈ T , and a
set of frequencies k ∈ Ω. By discretizing the integral into
voxels, rewriting the imager-dependent quantity Erx,i · Etx,j
as a matrix H, and vectorizing scene conductivity σ and
measurement g, the forward model is compactly written as
the matrix equation

g = Hσ. (2)

For our imaging systems, directly relating the discretized
scene configuration σ to transceiver measurements g for
people-sized volumes at centimeter resolutions can result in
a matrix H on the order of 105 measurements by 106 voxels.
To reduce the size of this matrix, depth cameras provide prior
information about the location of foreground objects within
the scene, which routinely eliminates over 90% of the columns
of H and rows of σ. However, explicitly computing a pseu-
doinverse to even this reduced problem is prohibitively expen-
sive. Instead, either FFT-based techniques [21] or regularized
iteration must be employed to realistically invert (2). GPU
accelerated matrix implementations using look-up tables and
matrix factorization have achieved reconstruction times on the
order of 10 s [19]. If the inverse scattering problem is instead
cast as a stationary phase asymptotic series, reconstruction
times on the order of 100 ms have been demonstrated [22].

The forward model (1) can be used to understand char-
acteristics of reconstructed images (Figure 3). An immediate
implication is that images are volumetric. However, built into
the Born approximation is the assumption that the incident
fields are not appreciably delayed by the scene, making it a
backscatter model suitable only for highly conductive materi-
als that strongly reflect at their surface and prevent radiation
from penetrating their interiors. Consequently, images mostly
consist of surfaces, and lack volumetric information about the
interior of objects. For conductive media, like human skin and
metal, this is a good assumption. For dielectrics, like plastic
and glass, this assumption fails because light will propagate
through these media at different speeds depending on the index
of refraction, resulting in artifacts where surfaces occluded
by dielectrics appear farther away in images than in reality.
Another issue is that specular reflection limits scene coverage.
Surfaces smooth on the order of the probing wavelengths
are mirror-like and visible only when they satisfy the law of
reflection with respect to the probing Rx-Tx pair. As people
and many threats are smooth at our operational wavelengths
(K-band 1.7-1.1 cm), specular reflection can significantly limit
scene coverage.

Image characteristics influence the choice of antenna layout,
which crucially determines scene coverage. Stationary aper-
tures with a slow shutter speed maximize coverage by imaging
people in a standardized pose from an optimal perspective.
Mechanically scanned apertures go further by measuring the
imaging volume from a diversity of perspectives, which in-
creases the chance a specular surface is seen. However, neither
of these options are available when imaging a person in
motion with a stationary aperture. To maximize coverage and
mitigate specularity, the frequency-diverse imager must exploit
its layout and fast shutter speed to collect multiple images of
people as they move through the imaging volume.

III. STITCHING

Image stitching seeks to combine multiple images of the
same scene into a single composite image called a stitch. In
general, stitching can be divided into three tasks: registration,
calibration, and blending [23]. First, registration aligns images
by modeling the geometric transformation relating images,
establishing correspondences between images, and then es-
timating the transformation parameters between those corre-
spondences. Next, calibration equalizes images to compensate
for variations in the imaging process, making overlapping
registered images locally similar. Finally, registered and cal-
ibrated images are blended to compute the resulting stitch
by compositing. In this section we discuss how these tasks
apply to millimeter wave images of people in motion, where
specularity-limited coverage and deformation complicate the
stitching process. The section concludes with a basic stitching
algorithm.

A. Registration

Registration is perhaps the most involved stitching task, and
the focus of this work. Humans are visually gifted by nature,
and easily align overlapping images of a scene. However,
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distilling what we do into an algorithm is surprisingly difficult.
We briefly review the literature for inspiration.

A popular stitching problem is to combine multiple pho-
tographs into a panoramic stitch [24]. Due to user measure-
ment patterns and camera image distortion, the geometric
transformation between photos is usually parameterized by
cylindrical or spherical projections [25]. Photo registration
generally proceeds by correlation [26], neural network infer-
ence [27], or local feature analysis to detect correspondences
and estimate the geometric transformation parameters between
photos. Local feature analysis in particular efficiently finds,
describes, and matches localized image features deemed ”in-
teresting”. Feature algorithms such as SIFT [28] and SURF
[29] coupled with bundle adjustment [30] or stochastic search
algorithms like RANSAC [31] are effective at solving the
photo registration problem. However, while local feature anal-
ysis seamlessly extends to 3D images [32], it is unclear if
millimeter wave images characterized by specularity-limited
coverage of mirror-like surfaces have sufficiently distinguish-
able features. Moreover, photo registration gives little insight
into modeling a deformable scene.

Medical imaging is deeply concerned with the registration
of deformable scenes. For instance, radiotherapy planning may
use computational anatomy to accurately register anatomical
structures against templates to safely predict and administer
dosage [33]. However, sophisticated medical image analysis
tends to be computationally prohibitive for real-time appli-
cations. A balance must be struck between accuracy and
computational complexity.

To develop a registration model suitable for real-time
millimeter wave imaging of people in motion, we start by
investigating the subproblem of registering images of rigid
body scenes that don’t deform. The defining property of a
rigid body is that the (Euclidean) distance between points
on the body are constant in time. Therefore, the geometric
relationship between a rigid body at two different times is
a distance-preserving isometry transformation. Isometries of
R3 are members of the Euclidean group E(3), and include
rotations, translations, reflections, and their compositions.
Since a rigid body can’t be continuously transformed into a
reflection without deformation, we restrict the isometries under
consideration to the Special Euclidean group SE(3), which
excludes reflections. These transformations are called rigid
transformations. For our millimeter wave imaging system,
the measurement and image formation process introduce no
spatial distortion in the resulting volumetric images. Thus,
images of rigid body scenes are geometrically related by rigid
transformations.

A rigid transformation Aba ∈ SE(3) : R3 → R3 (Figure 4)
can be interpreted as a change of basis relating how a
geometric point represented by ra ∈ R3 with respect to basis
a is represented by rb ∈ R3 with respect to basis b. Any rigid
transformation can be uniquely represented by some proper
rotation matrix Rba ∈ {M ∈ R3×3|det(M) = 1} = SO(3)
(Special Orthogonal group SO(3) excludes reflections) and
translation vector tba ∈ R3

rb = Aba(ra) ≡ Rbara + tba. (3)

Fig. 4. Rigid Transformation — A rigid transformation Aba ∈ SE(3) can
be interpreted as transforming points with respect to a fixed basis (left), or
equivalently a change of basis describing fixed points (right). As a change
of basis, Aba maps point representation ra ∈ R3 with respect to basis a, to
rb ∈ R3 with respect to basis b. Aba can be represented by proper rotation
matrix Rba ∈ SO(3) and translation vector tba ∈ R3.

The subscripts on Aba indicate the transformation is from basis
a to basis b. The inverse of (3) is easily verified to be

ra = A−1ba (rb) ≡ R−1ba (rb − tba), (4)

and is equivalent to Aab from basis b to basis a

Aab = A−1ba (5)

where Rab = R−1ba ∈ SO(3) and tab = −R−1ba tba.
Rigid transformations are closed under functional composi-

tion. Given Aba from basis a to basis b, and Acb from basis
b to basis c, we can compute Aca from basis a to basis c by
repeated application of definition (3)

rc = Acb(Aba(ra))

= Rcb(Rbara + tba) + tcb

= (RcbRba)ra + (Rcbtba + tcb)

= Rcara + tca

= Aca(ra),

where Rca = RcbRba ∈ SO(3) and tca = Rcbtba+tcb. This
is compactly written using functional composition notation as

Aca = Acb ◦Aba. (6)

Notice how the basis b subscripts ”cancel” in (6); in a sense,
basis b helps us compute Aca, but is not fundamental to the
description of Aca.

With the language of rigid transformations we can develop
a registration model for rigid scenes (Figure 5). The geometric
transformation parameters, or pose, of a rigid scene is fully
described by a rigid transformation with respect to some basis.
We seek to take images of a rigid scene in different poses
relative to global basis g and align them relative to stitch
basis s. Suppose basis b is attached to the rigid scene. We can
experimentally measure pose Agb for each image, and define
a constant rest pose Abs to locate the scene relative to basis
s. Then pose

Ags = Agb ◦Abs (7)
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Fig. 5. Rigid Registration Model — A rigid scene is imaged relative to global
basis g (left). Images are aligned relative to stitch basis s (right). Suppose
basis b is attached to the scene. Pose Agb is experimentally measured each
image. Rest pose Abs is a constant defined to locate the stitch relative to basis
s. Pose Ags = Agb ◦Abs then relates stitch points rs to global points rg .

Fig. 6. Orthogonal Procrustes Analysis — Computes the optimal rigid
transformation Aba that aligns constellation Ca onto constellation Cb (left).
Equivalently, Aba is interpreted as a change of basis from a to b (right).

relates stitch points rs to global points rg . Thus for rigid scene
registration the main task is to measure pose Agb.

In a controlled imaging environment, one way to exper-
imentally estimate the pose of an object with respect to a
sensor is to measure a known set of points C ⊂ R3, called
a constellation, and apply Orthogonal Procrustes Analysis
(OPA) (Figure 6). OPA computes the optimal rigid transfor-
mation Aba that transforms constellation Ca onto a similar
constellation Cb (see supplementary materials for derivation)

Aba = Procrustes(Ca, Cb). (8)

Equivalently, pose Aba can be interpreted as a change of
basis from basis a to basis b. To use OPA in practice, it is
assumed constellation Ca is known and recorded relative to
basis a in a virtual template file before measurement. The
constellation is assumed to consists of three or more points
distributed asymmetrically to uniquely constrain a pose. A
physical version of the constellation is then affixed to a rigid
scene and measured as constellation Cb relative to some sensor
system basis b. Application of equation (8) results in pose Aba
that encodes the pose from the rigid scene to the sensor system.
This is used in several context throughout the work.

Fig. 7. Blending — Stitched data from a rotation experiment is blended
in two ways. Magnitude summation blending (left) is sensitive to noise and
exposure time, while maximum magnitude blending (right) is not.

Section IV experimentally applies the rigid registration
model and OPA to rigid scenes undergoing translational and
rotational motion. Section V extends the rigid registration
model to deformable scenes by incorporating a pose skeleton,
which is used to approximate the deformation of a scene using
a small number of rigid transformations.

B. Calibration

Calibration makes overlapping registered images locally
similar by correcting for variations in the imaging process. For
photographic stitching, the primary concern is limited dynamic
range, in which the dynamic range of a panorama exceeds the
dynamic range of the camera, such as when stitching photos
of bright sky and dark ground. Tone mapping is typically used
to stitch these types of high dynamic range panoramas.

For millimeter wave images, the interpretation of signal
magnitude between different images is more difficult to as-
certain, which affects blending. The magnitude of the re-
constructed images depends in a complicated way on scene
configuration, dynamic range, signal-to-noise ratio (SNR),
prior information, and regularized reconstruction algorithms.
The magnitude of each image is effectively determined up to
a different unknown scaling factor.

Experimental experience indicates that similar scenes
have similar normalized magnitudes. Satisfactory preliminary
stitching results have been obtained without extensive cali-
bration. However, calibration must be done to properly blend
dissimilar images for high quality ATD input. This remains an
open avenue of research.

C. Blending

The last stitching task is to blend registered and calibrated
images by compositing to produce the final stitch. For every
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stitch voxel, the associated stitch point rs is transformed
to global point rg , the source images are sampled using
interpolation, the sampled data is combined by some blending
operation, and the result is accumulated as stitch voxel data.

There is no one correct blending operation, and a variety of
choices exist to varying effect (Figure 7). A plausible rule is
to add the sampled image magnitudes together. This works but
produces a stitch that is sensitive to exposure time and low-
level noise. For data sets of unknown size, such as streaming
data, a better rule is to assign the maximum magnitude of the
sampled images, which mitigates the issues with addition. For
the remainder of this paper all results use the maximum value
blending strategy.

D. Algorithm

To stitch an image set, we apply the following algorithm.
Given input image set Σ, image reconstruction points rg ∈ R3

with respect to the global basis g, stitch points rs ∈ R3 with
respect to stitch basis s, and rest pose Abs, we wish to output
a stitch. First initialize the stitch to zero. For each image, solve
the registration problem to estimate pose Agb. Then transform
rs with equation (7) to obtain query points r′g . Next, sample
the image at the query points using interpolation to obtain
registered image data. Finally, blend registered data with the
current stitch to update the stitch. This algorithm is suited for
image set Σ of unknown size.

Algorithm 1: Stitching

Input: Σ, rg ⊂ R3, rs ⊂ R3, Abs ∈ SE(3)
Output: stitch
stitch = 0
for image ∈ Σ do

Agb = register(image)
r′g = Agb ◦Abs(rs)
data = interpolate(image, rg , r′g)
stitch = blend(stitch, data)

end

IV. RIGID BODY STITCHING

Due to the complexity of stitching millimeter wave images
of a person in motion, we first apply the rigid registration
model (7) developed in Section III to perform rigid body
stitching. Conceptually, a rigid scene and rigid imager move
relative to each other along different trajectories while an
image set is measured. In this section we present two rigid-
body experiments. The first experiment models a person being
conveyed past an imaging system by using a mannequin
on a 2D translation stage. The second experiment models a
common SAR scanning configuration used in airport security
by using a mannequin on a rotation stage.

The key task of rigid registration is to measure rigid scene
pose Agb with respect to the global imager basis g. For
the controlled experiments in this section we choose to use
photogrammetry with OPA (Figure 8). A Creaform MaxSHOT
3D camera is used to measure the location of point-like

Fig. 8. Photogrammetry Registration — Constellation Ct is designed relative
to template basis t. A physical constellation is affixed to a rigid body and
measured relative to photogrammetry basis p. OPA is applied to estimate pose
Apt.

reflective sticker fiducials relative to a photogrammetry prop
basis p to produce a point cloud accurate to within imager
tolerances [34] [35]. Three or more fiducials are patterned in
an asymmetric constellation on an object to unambiguously
encode the scene pose. To isolate the constellation in the
presence of other points, a special numbered fiducial is placed
at the center of the constellation to group points by radius.
The first time the constellation Cp is measured with respect to
basis p, the points are used to construct a template basis t into
which they are transformed and recorded as constellation Ct in
a template file. Subsequent measurements of constellation Cp
are compared against the template file using OPA to determine
pose Apt from template basis t to photogrammetry basis p

Apt = Procrustes(Ct, Cp) (9)

The pose for every antenna is determined in the same manner.
Choosing a particular antenna to serve as the global basis g,
the pose Apg is defined. Using the photogrammetry prop as
an intermediate basis, the pose Agt is computed as

Agt = Agp ◦Apt (10)

If we affix a constellation to a stage, we can rename template
basis t to scene basis b to measure pose Agb.

There is nothing special about photogrammetry, and in
general any sensor system capable of imaging points in R3

may be used to experimentally measure poses.

A. Translation stitching

In this experiment, a mannequin is placed on a 2D trans-
lation stage. The stage can be programmed with a sequence
of stage parameter vectors x ∈ R2 to follow any trajectory in
a plane. To simplify the discussion we restrict our attention
to linear trajectories modeling a person being conveyed past
an imaging system. The experiment proceeds by stepping a
mannequin along a linear trajectory and collecting image data
at each step.

The stage is equipped with a photogrammetry constellation
so pose Agb can be experimentally registered by (10). This is
a time consuming process, so we choose to measure the pose
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Fig. 9. Translation Registration — A linear stage affixed with basis b is
translated relative to global imager basis g. Terminal stage configurations
x(0) and x(1) and associated poses A(0)

gb and A(1)
gb are measured, and linearly

interpolated with parameter α to compute x(α) and A(α)
gb .

for a small number of stage configurations and to compute
arbitrary poses from those measurements.

A linear trajectory can be constructed by linearly interpolat-
ing a pair of stage parameter vectors and their corresponding
poses (Figure 9). The linear interpolation, or lerp, of two
properties p0 and p1 by parameter α ∈ R is defined as

lerp(p0, p1, α) ≡ p0 + (p1 − p0)α. (11)

Given stage parameter vectors x(0) and x(1) with associated
measured poses A(0)

gb and A
(1)
gb and interpolation parameters

α = 0 and α = 1, we compute x(α) and A(α)
gb for any α as

x(α) = lerp(x(0),x(1), α) (12)

A
(α)
gb = lerp(A

(0)
gb , A

(1)
gb , α). (13)

For a linear trajectory with 2 ≤ N ∈ Z points and
equal-sized steps starting at A(0)

gb and ending at A(1)
gb , let

α = (n− 1)/(N − 1) where n ∈ [1, N ] ⊂ Z.
With image registration solved, we apply the stitching algo-

rithm. Experimental image data and a stitch of a mannequin
undergoing a linear translation trajectory past an imaging
system are shown in Figure 10. It is clear that individual
images suffer from specularity-limited coverage, while the
stitch improves coverage on the side of the mannequin closest
to the imager. This experiment indicates that a flat imaging
system from a single perspective will be limited by specularity
even when images are stitched, which suggests that different
antenna configurations and trajectories should be considered.

B. Rotation stitching

A more interesting rigid body scene trajectory is pure
rotational motion. Rotation mitigates specularity-limited scene
coverage by viewing a scene from all sides. Imaging a rotating
scene with a fixed aperture is equivalent to imaging a fixed
scene with an aperture counter-rotating around the scene. This
mimics a common configuration found in commercial me-
chanically scanned SAR systems, permitting a fair comparison
between imagers to be made. However, it should be noted
that SAR coherently reconstructs a single image based on

Fig. 10. Experimental Translation Stitching — A single image (left) is
compared against the stitch (right). Note the gains in coverage on the limbs.

Fig. 11. Rotation Registration — A rotation stage affixed with basis b is
rotated relative to global basis g. For stage configurations x(0) and x(φ)

associated poses A(0)
gb and A(φ)

gb are measured. From these poses the stage

axis n̂ and a point on that axis p are deduced, and pose A(θ)
gb for any stage

configuration x(θ) is computed.

all collected measurements, while a real-time imager coher-
ently reconstructs a sequence of images that are incoherently
stitched into a single image.

In this experiment, a mannequin is placed on a rotation
stage. The stage can be programmed with a sequence of stage
configuration angles x(θ) = θ ∈ [0, 2π) ⊂ R to follow any
rotational trajectory. The experiment proceeds by stepping a
mannequin along a rotation trajectory and collecting image
data at each step.

Once again we choose to use photogrammetry to exper-
imentally register scene pose Agb for a small number of
stage configurations to compute arbitrary poses (Figure 11).
A rotation is fully described by axis direction n̂ ∈ S2, axis
point p ∈ R3, and angle θ. n̂ and p are constant for any stage
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pose, so we estimate these to construct new poses. Given
stage configuration angles x(0) = 0 and x(φ) = φ 6= 0 with
associated measured poses A(0)

gb and A
(φ)
gb , we compute pose

A
(φ)
gg which encodes a rotation of φ about the stage axis relative

to global basis g

A(φ)
gg = A

(φ)
gb ◦A

(0)
bg . (14)

To understand this equation consider scene basis b as fixed
while basis g is transformed, and recognize this is equivalent
to transforming points relative to fixed basis g by Figure 4. We
extract from A

(φ)
gg rotation matrix R

(φ)
gg and convert it to axis-

angle representation [36] to isolate axis direction n̂. However,
the translation vector t

(φ)
gg is not necessarily an axis point p.

This is because R
(φ)
gg represents a rotation about the global

origin and not the stage axis. To compute axis point p, we
observe p must be unchanged by pose A(φ)

gg

p = A(φ)
gg (p) = R(φ)

gg p + t(φ)gg . (15)

An axis is a line in 3D, so an infinite number of points satisfy
this equation. To guarantee a unique solution we solve for p
in the 2D planar subspace perpendicular to axis direction n̂.
The projection of t(φ)gg on this subspace is

t(φ)′gg = t(φ)gg − (t(φ)gg · n̂)n̂. (16)

Recasting (15) in 2D (denoted by primes), we solve for p′

p′ = (I′ −R(φ)′
gg )−1t(φ)′gg (17)

where I′ is the identity matrix. Expanding p′ relative to the 3D
global basis g yields axis point p. We can now construct scene
pose A

(θ)
gb for arbitrary stage configuration angle x(θ) = θ.

First construct pose A
(θ)
gg by moving the scene axis to the

global origin by subtracting p, then rotate about axis direction
n̂ by angle θ, and finally restore the axis to its original position
by adding p

A(θ)
gg (rg) = R(n̂, θ)(rg − p) + p. (18)

Functional composition with A(0)
gb yields the desired pose

A
(θ)
gb = A(θ)

gg ◦A
(0)
gb . (19)

For a rotation trajectory with 1 ≤ N ∈ Z points and equal-
angle steps starting at A(0)

gb , let x(θ) = θ = 2π(n− 1)/N
where n ∈ [1, N ] ⊂ Z.

With registration solved, the stitching algorithm is applied.
Experimental image data and a stitch of a mannequin under-
going a full rotation trajectory in front of an imaging system
are shown in Figure 3 and Figure 12. The stitch exhibits
excellent scene coverage comparable to SAR systems [5]
limited only by occlusion and specular surfaces significantly
aligned with the axis. This results emphasizes the benefits
of tightly controlling the imaging environment and imaging
a scene from multiple perspectives. Unfortunately we must
give up some of that control to stitch people in motion.

Fig. 12. Experimental Rotation Stitch — A stitch of a mannequin wearing
a backpack containing a pressure cooker is shown from three perspectives.
Compare to raw image Figure 3. Coverage is excellent, except for the top of
the torso due to specularity. Images are comparable to SAR systems.

V. SKELETON STITCHING

The primary difficulty with stitching people in motion is that
the scene is not a rigid body, but instead one that deforms,
dramatically complicating the registration process. A single
rigid transformation is no longer sufficient to fully characterize
the scene pose. Instead, we segment the scene into a set
of parts whose poses can be locally approximated by rigid
transformations and combined with a deformation model.

It is impractical for security applications to affix pho-
togrammetry constellations to people being imaged, therefore
a different approach from section IV is needed to measure
the pose of people. A serendipitous solution to this problem
is to repurpose the depth cameras used to constrain the
inverse imaging problem. Our imager incorporates Kinect
depth cameras which were originally designed as interfaces for
video game systems and can fit skeleton armatures to people
to approximate their pose.

The Kinect skeleton is organized as a set of bones, b ∈ B
whose individual poses are described by rigid transformation
(Figure 13). The Kinect skeleton contains only about 25
bones, which is clearly not anatomically correct, reflecting
the Kinect’s intended usage as an entertainment device rather
than a precision instrument. Thus, the Kinect skeleton is only
a first order approximation of the scene pose. Regardless,
it is a strong prior that can bootstrap more sophisticated
registration in future research. Poses measured relative to depth
camera basis c must be mapped to global basis g to perform
stitching, so depth camera pose Agc must first be measured
by registration.

Registration of a depth camera with the imager was tacitly
assumed when describing how depth information is used to
constrain the inverse imaging problem (2). The registration
process is a permutation of the ideas used to register the
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Fig. 13. Skeleton Registration — A Kinect skeleton models a person’s pose
with a set of bones b ∈ B and associated rigid transformations. The skeleton
can take on any rest pose Abs relative to stitch basis s (left). For each image,
the skeleton pose Agb is measured relative to global basis g (right).

Fig. 14. Multisensor Registration Constellation Target — A constellation
distinguishable in microwave conductivity and geometric depth is used to
register the imager with depth cameras. Points consist stalks tipped with
metal foil. Masking tape covers the foil to improve depth camera visibility.
Photogrammetry fiducials are included to generate an accurate template file.

stages in section IV. A multisensor registration constellation
target is constructed with points distinguishable in microwave
conductivity and geometric depth (Figure 14). Each point of
the target consists of a long narrow stalk tipped with a layer
of metal foil, masking tape, and a photogrammetry fiducial.
The foil acts like a fiducial for the microwave imaging system,
while the stalk acts like a fiducial for the depth camera. The
masking tape provides a matte surface to improve the visibility
of the tip to the depth camera, which is confused by specular
surfaces like the shiny foil. Initially the target is measured
with photogrammetry to create a highly accurate template file
constellation Cm relative to the multisensor target basis m.
The target is then measured simultaneously with the imager
and depth camera to yield constellations Cg and Cd relative to
the global basis g and depth camera basis d respectively. OPA

Fig. 15. Rigid Subvolume — For each bone b ∈ B, a rigid pill characterized
by radius ρb and length lb is defined (top left). A grid relative to stitch
basis s is partitioned by the rest pose subvolumes (top right). Transformed
subvolumes overlap (red) when adjacent bones are not colinear (bottom).

compares Cg and Cd to Cm to yield poses Amg and Amd.
Pose Agd is then computed as

Agd = Agm ◦Amd. (20)

With the depth cameras registered, depth and skeleton
information are transformed into the global basis g to inform
imaging and stitching. The skeleton by itself is not immedi-
ately useful for stitching. We must first associate the skeleton
with a geometric ”skin”. Here we experimentally demonstrate
a simple model that segments the scene into rigid subvolumes
attached to bones. We then extend this model to account for
deformation by using techniques from computer graphics, and
demonstrate its application in simulation.

A. Rigid Subvolume Stitching

A simple way to associate a skeleton with its surrounding
volume is to define a rigid subvolume attached to each bone
(Figure 15). An obvious candidate is an axis-aligned cylinder
of some predetermined radius ρb and length lb. Points are
easily tested to be within this cylinder by checking if their
projection on the axis falls within the interval of the bone and
if their distance from the axis is less than the radius.

While a cylinder is a good subvolume for a single bone,
cylinders do not smoothly connect at skeletal joints. A remedy
is to cap the cylinder with spheres to create a pill-shaped
subvolume. In this way, joints are much better represented.
However, using a pill causes significant subvolume overlap
around joints, double counting a large number of points. To
mitigate this issue, the spherical cap belonging to the non-basis
end of a bone is made to exclude points, resulting in a ”dented”
pill. When these subvolumes are mapped to a skeleton the
overlap at joints is minimized.

Before stitching a person in motion, an arbitrary skeleton
must be selected to serve as the rest pose which defines the
pose of the stitched image (Figure 13). Conveniently, any
experimental skeleton suffices, although rest poses with limbs
spread apart are likely best suited for ATD. A grid of points
is then defined relative to the stitch basis s. For each bone
b ∈ B with associated rest pose Abs, a list of grid points
rs,i ∈ R3 within the bone subvolume is tabulated, where the
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Fig. 16. Experimental Rigid Subvolume Stitch — In no single image are the
letters all visible (left); note the camera overlay. The the word ”DUKE” is
clearly read in the stitch (right). Note the crude stitching around joints caused
by the simplistic registration model, particularly around the hips and thighs.

index i ∈ I(b) ⊂ Z enumerates points belonging to bone b.
To stitch image data of a person in motion, skeleton data is
measured for each frame to obtain the measured bone poses
Agb with respect to global basis g. For every bone b ∈ B, the
associated list of grid points are transformed by

rg,i = Agb ◦Abs(rs,i); i ∈ I(b) (21)

solving the registration task. The stitching algorithm can then
be applied.

Experimental demonstration of rigid subvolume stitching is
presented in Figure 16. Here the author was imaged with a set
of metal letters spelling ”DUKE” across his chest and hidden
under a vest. The subject faced the imager with their feet
planted, and rotated their torso over their full range for 60
frames. In no single image are all 4 letters visible, however
when stitched the full word is seen, lending credibility to
the skeleton technique. However, it is clear that the Kinect
skeleton is crude, the bone subvolumes are overly simplistic,
and overlap between subvolumes is problematic. A more
sophisticated deformation registration model is needed to
realistically stitch people in motion.

B. SKD+SSD Stitching

Accurately modeling the deformation of a solid is compu-
tationally demanding. Approximations must be made for real-
time imaging systems. A simple deformation model used to
great effect in computer graphics is a combination of Shape
Key Deformation (SKD) and Skeleton Space Deformation
(SSD) [37] (Figure 17). This model utilizes a skeleton con-
ceptually compatible with the Kinect skeleton. SSD naturally
extends rigid subvolume registration to account for realistic
deformation. However, extreme deformations with SSD can
cause unnatural results. SKD solves this issue by first modify-
ing the underlying geometry as a function of skeleton pose
before SSD is applied. While neither model is physically
motivated, with enough effort, arbitrarily realistic deformations
are possible.

Fig. 17. SKD+SSD — [a] SSD is implemented by defining rest geometry
and assigning weights wSSDb,i for each bone and point (top). Deformation is
achieved by rigidly transforming points with each bone and taking a weighed
average (bottom). Unrealistic deformation occurs for extreme poses. [b] SKD
forms new shapes from shape keys k ∈ K that share the same topology by
taking a weighted average of corresponding points with weights wSKDk (top).
Weighting can be determined as a function of external variables, such as α
in this example (bottom). [c] SKD is used to modify rest geometry before
application of SSD to address problematic deformation (top). Pose variables,
such as an angle θ between bones, can be mapped to SKD weight variables,
such as α in this example (bottom).

SKD interpolates different shape keys with the same vertex
topology to produce new shapes. Each shape key k ∈ K
defines a list of vertices rk,i labeled with index i ∈ I . Stitch
vertices rs,i are computed by taking the weighted average of
corresponding shape key vertices over all keys

rs,i =
∑
k∈K

wSKDk rk,i;
∑
k∈K

wSKDk = 1 (22)

where wSKDk are the shape key weights. The weights can
be made to be a function of the skeleton pose. At one
extreme, for every pose a different shape key could be defined,
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Fig. 18. SKD+SSD Puppet — A life-like human model is posed with a
skeleton and deformed with SKD+SSD. Note the threat object on the hip.

which would essentially model deformation by lookup table.
However this would take a prohibitive amount of memory.
Instead, additional shape keys are defined only when memory-
efficient SSD results in problematic deformations.

SSD transforms geometry as a function of skeleton pose
which effectively reduces the number of degrees of freedom
needed to describe deformation. SSD is a modification of rigid
registration equation (7). For every vertex rs,i with respect to
stitch basis s, the associated vertex rg,i with respect to global
basis g is computed by taking the weighted average of rigid
transformations over all bones

rg,i =
∑
b∈B

wSSDb,i Agb ◦Abs(rs,i);
∑
b∈B

wSSDb,i = 1 (23)

where wSSDb,i are the deformation weights for each bone b ∈ B
and vertex index i ∈ I . SSD strikes a good balance between
computational complexity and realism. However, geometry
influenced by a bone that is twisted or bent to an extreme
degree relative to other bones causes pinching and collapsing
of the resulting deformation. SKD is therefore applied before
SSD to supply geometry suitable for deformation by the given
skeleton pose.

While the governing equations of the SKD+SSD model
are extremely simple, generating high quality data to feed
the model is not a trivial task. The open source animation
software Blender is used to facilitate this process. Blender
is used to prepare a representation of a person by modeling
surface geometry, defining a skeleton, and weighting the
geometry to the skeleton. Taken together, this data is called a
puppet (Figure 18). The puppet geometry can be realistically
deformed by specifying a skeleton pose. The skeleton pose
can be animated with Blender in simulation, or experimentally
measured with depth cameras. For this pioneering work, we
restrict our research to simulation where the skeleton pose can
be perfectly known.

Puppet and animation data are exported from Blender and
imported into the imaging software. Imported geometric data
is composed of vertices and triangular faces. Vertices are used

Fig. 19. Cactusing — Geometry produced by computer graphics modeling
software is usually an orientable surface composed of faces with normals
n̂f ∈ S2 (left). To detect ”worn” features above the surface, points are
added along vertex normals n̂v ∈ S2 computed from face normals (center).
The distribution of points is defined by a 1D point profile rn,i (right).

to model point scatterers in simulation. Faces are supposed
to represent surfaces, however if face vertices are farther
apart than half the wavelength of the probing radiation, the
face must be subdivided to correctly model a surface. In
addition, the faces form a orientable surface. To stitch the
volume immediately surrounding the body where worn objects
are found, points are added to the geometry at each vertex
along the average normal of adjacent faces in a ”cactusing”
procedure (Figure 19).

A stitching simulation proceeds by selecting a frame of
animation, assigning the corresponding skeleton pose to the
puppet, transforming the puppet geometry to global basis g,
and then applying the forward model (2). The inverse problem
is then solved to reconstruct an image. To stitch, the skeleton
pose can be reused to solve the registration problem. The
stitching algorithm can then be applied. Stitch data can either
be accumulated per vertex, or mapped to a regular grid relative
to stitch basis s.

A simulated SKD+SSD stitch of a male puppet walking
past an imager configured like the experimental system is
shown in Figure 20. The puppet is equipped with a gun on
his right thigh. When compared to the rigid subvolume stitch,
the quality of the SKD+SSD stitch is much better: overlap is
eliminated; joints are realistically deformed and stitched; the
improved skeleton more accurately represents the pose of the
scene; and the improved geometry better matches the human
body. Whereas ATD could miss the threat object in any single
image, it is plausible that ATD would easily identify the threat
on the persons thigh in the stitched image.

With perfect knowledge of the skeleton pose, this kind
of simulation represents the gold standard for SKD+SSD
stitching. The problem of experimentally estimating human
pose has been extensively studied in the computer vision
literature [38], but is still an active area of research. Combining
the SKD+SSD deformation model with available experimental
skeleton pose estimation is the next step in research.
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Fig. 20. Simulated SKD+SSD Stitch — A male puppet wearing a threat object
was animated walking past a simulated copy of the experimental imager.
Specularity-limited coverage critically restricts the number of frames the threat
is visible (left). Stitching with the same puppet greatly improves coverage,
making the threat easily visible in a standardized pose (right).

VI. CONCLUSION

In this work we have demonstrated the ability to stitch
images of people in motion (and repose them in a standardized
pose) from a sequence of images from a screen-while-walk
millimeter wave imager. By leveraging the motion of a person
moving through the imaging volume, a diversity of images
with different perspectives and coverage are obtained which
can be stitched together into a single image of the scene
with better coverage. The stitching concepts of registration,
calibration, and blending were discussed in relation to the
experimental imager. To handle the complexities of stitching
a deforming body, a Kinect depth camera was used to ex-
perimentally estimate the skeleton pose of a person, and a
model subdividing the scene into rigid subvolumes produced
a stitch that demonstrated the technique was viable. A more
realistic SKD+SSD deformation model was formulated, and
it was shown in simulation to effectively stitch a person in
motion assuming the pose skeleton can be estimated.

With the introduction of SKD+SSD deformation and its
incorporation into a full imaging system simulation suite, a
host of future research questions can be answered without
the need to construct physical experiments. For instance, the
layout of the imager and trajectory a person takes through
the imaging volume must be optimized to maximize coverage
while minimizing system costs. Hallways, U-turns, dog-legs,
and arches are all being considered, and can be rapidly
evaluated on a computer. In addition, a calibration solution
must be developed so images can be properly combined. We
hypothesize a calibration object present in every image could
be used to normalize the magnitude of the images. With good
coverage of the scene established, a process that matches a
person to a puppet from a library must be developed to stitch
a wide variety of body shapes. The most challenging unsolved
task is to estimate the skeleton pose of a real person in the
scene which is beyond the limitations of the Kinect skeleton

functionality utilized in experiment.
The ultimate metric for the usefulness of stitching images

of people in motion is how ATD on raw images compares
to ATD on stitches, or images processed in some other way.
We suggest stitching as a preprocessing step may significantly
simplify and improve ATD analysis, but this remains an open
question.
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